Johnson-Johnson

Working safely with active, pharmaceutical ingredients

Roadmap on Carcinogens event: "STOP"

Brussels, October 10, 2023

Michel Vangeel Sr. Principal Industrial Hygiene & Process Safety Management Workplace Health & Safety Excellence

Content

- Hazard identification & communication
- Qualitative & Quantitative Risk Assessments
- Controlling exposures by respecting Hierarchy of Controls

Content

- Hazard identification & communication
- Qualitative & Quantitative Risk Assessments
- Controlling exposures by respecting Hierarchy of Controls

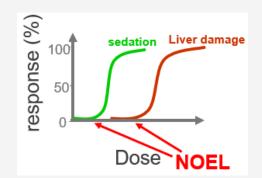
Hazard Characterization API

Approach OEL setting API

- No regulatory occupational exposure limits established for active, pharmaceutical ingredients
- Identify hazards of APIs & isolated process intermediates (IPIs) and safe exposure levels;
- Integrated in R&D process steps: Drug Safety Sciences
- Identified during different moments / timelines in the development of an API
- Initial assessments: identification of Health Hazard Classes
- During later stage of the development of the product: scientific and databased calculation of exposure limits and related notations
 - = Occupational Exposure Limit

Basic Hazard Characterization API Health Hazard Classification (HHC)

- Health Hazard categories: a classification system used to assign materials into categories of increasing severity based upon their inherent pharmacological and toxicological properties (non-clinical and clinical data).
- General criteria:
 - Potency (mg/day)
 - Therapeutic class / Mode of action
 - Acute toxicity
 - Severity of acute effects (i.e. life threatening)
 - Acute warning symptoms
 - Onset of warning symptoms
 - Medically treatable
 - Dermal sensitization


- Need for medical intervention
- Likelihood of chronic effects (i.e. cancer)
- Severity of chronic effects (i.e. life-shortening)
- Reversibility
- Professional Judgment Alteration of the quality of life (i.e. debilitating)
- Carcinogenicity
- Respiratory sensitization
- Corrosivity

- Occupational Toxicology testing:
 - Skin and eye irritation
 - Skin sensitization

Basic Hazard Characterization API

Occupational Exposure Limit (OEL)

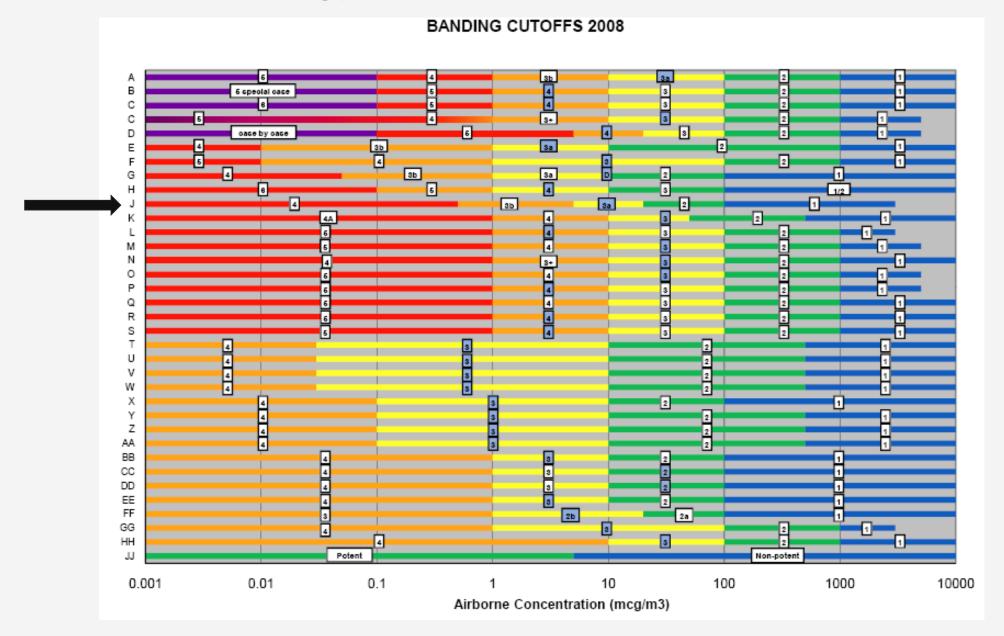
OEL (8 hr-TWA) (mg/m³) = Point of departure (mg/day) x BW V (UFs)(MF)(S)(α)

Point of departure: NOEL/NOAEL, LOEL/LOAEL: Identify critical end point considering all available data: including human & animal data; pharmacology, adverse/side effects, carcinogenicity, target organs, Repro/developmental effects, etc Lowest clinical effect dose **BW:** Average human body weight (50 kg)

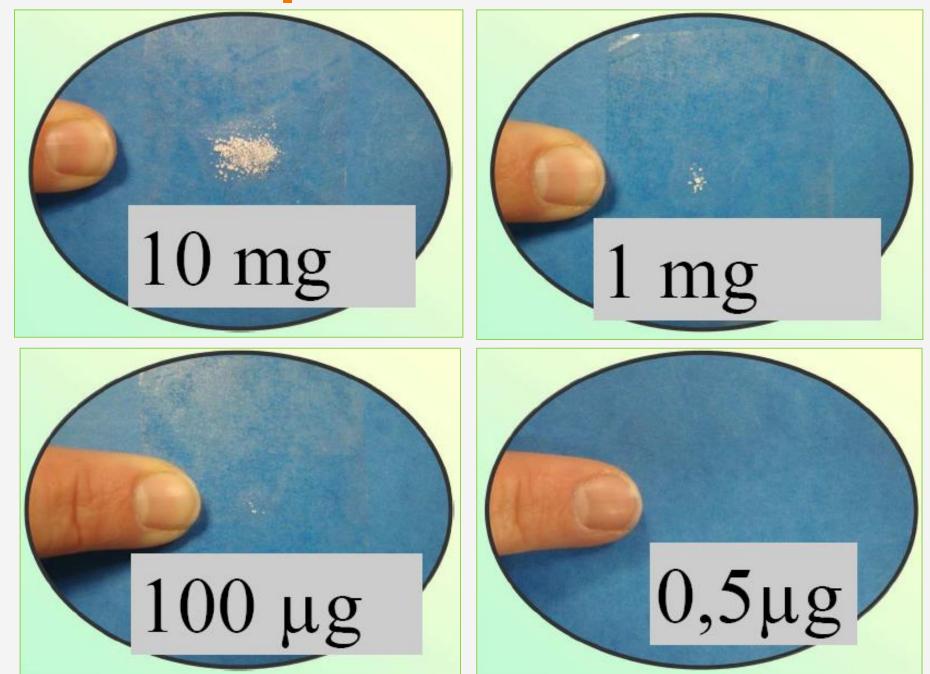
UF: Uncertainty Factors:

- account for differences between people (susceptibilities)
- account for difference between species
- extrapolate from a lowest-observed-effect level (LOEL) to a NOEL
- account for animal study design (subchronic to chronic)

MF: Modifying Factors

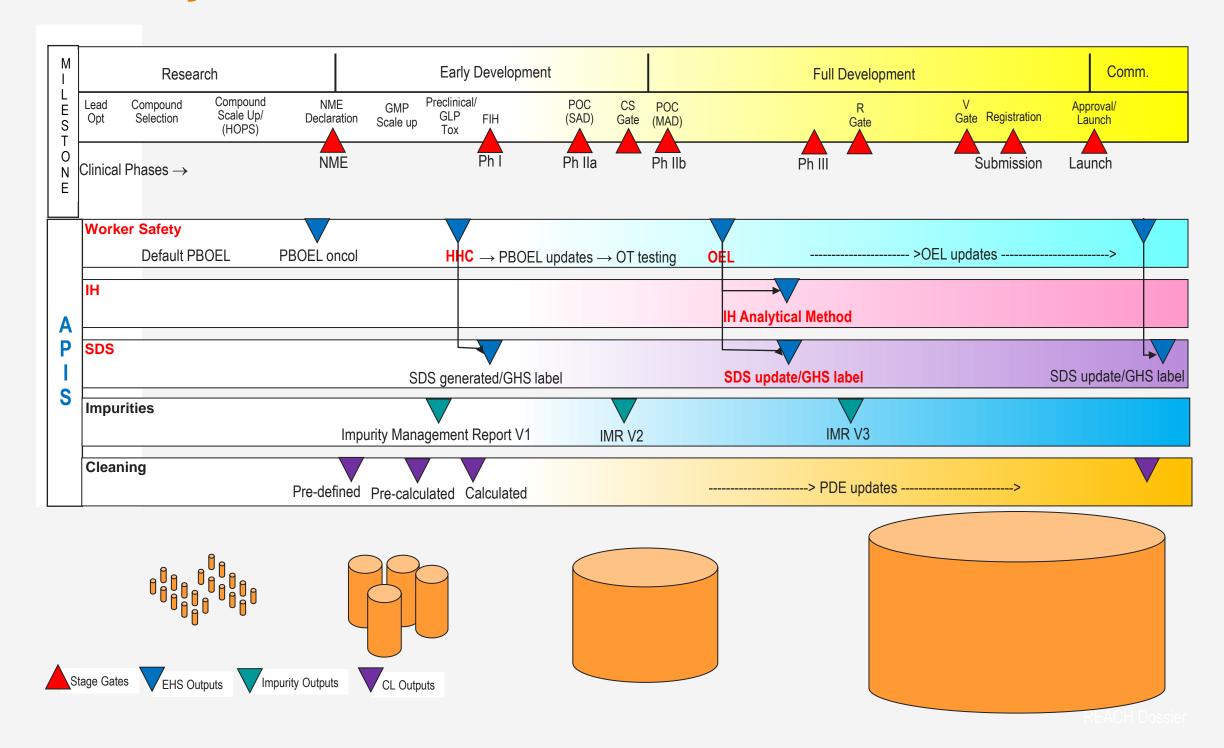

- account for database incompleteness, severity of effects, etc.
- **S:** Pharmacokinetics (half-life and accumulation)
- α: Used to adjust the absorption of a compound such that it equals 100 % via inhalation.

V: Volume of air breathed in an 8-hour workday (10 m³)


Health Hazard Categories

Occupational Toxicology Roundtable

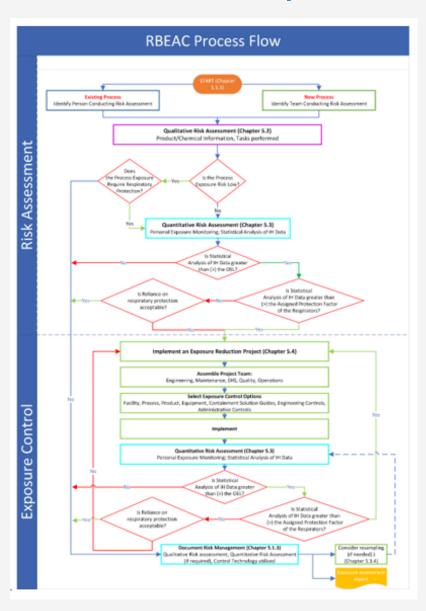
Occupational Exposure Limits



Notations

- **SKIN**: highlights the potential for significant absorption through the skin.
- **DSEN** Dermal Sensitizer: highlights the potential for a compound to cause delayed allergic skin reactions (sensitization), such as wheals and rashes.
- **RSEN** Respiratory Sensitizer: highlights the potential for a compound to cause delayed allergic reactions (sensitization), such as shortness of breath, asthma and anaphylaxis.
- **REPRO**-Reproductive Effector: highlights the potential for a compound to have adverse effects on reproduction and fetal development.
- CORROSIVE highlights the potential for a compound to cause destruction of skin and/or eye tissue after a limited period of exposure
- OTOTOXIC highlights the potential for a compound to cause hearing impairment or balance problems, regardless of noise exposure.
- **CYTOTOXIC** highlights the potential for a compound to interact directly with DNA or DNA-associated macromolecules, resulting in cell death, affecting both healthy and abnormal (i.e., tumor) cells.

Worker Safety in SM New Product & Process Introduction - API



Content

- Hazard identification & communication
- Qualitative & Quantitative Risk Assessments
- Controlling exposures by respecting Hierarchy of Controls

Risk Based Exposure Assessment & Control Process

- 1. Basic Hazard Characterization
- 2. Qualitative Risk Assessments
- 3. Quantitative Risk Assessments
- 4. Exposure Control Solutions
- 5. Forms:
 - ✓ CEAT: Chemical Exposure Assessment Tool
 - ✓ CSG: Containment Solution Guides
- 6. Attachments
 - ✓ Basic information characterization & assessments Unit Operations

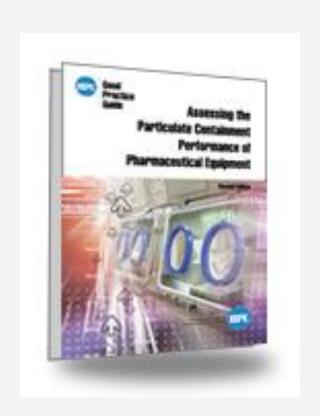
Quantitative Risk Assessment

- Validated analytical methods developed for each Active Pharmaceutical Ingredient
- 2 J&J Approved Laboratories: LOEH Belgium, BV USA
- 8-point validation includes;
 - Sensitivity
 - Standard Curves (linearity)
 - Media Selection
 - Desorption Efficiency
 - Storage Stability
 - Sampling Stability (collection efficiency)
 - Analytical Precision
 - Accuracy
- Level of detection 15 minutes sample: 10% OEL
- Disposable Inhalable Samper, different type of filters (glass fiber, nylon, Teflon, acid coated)

Professor Sleeth University Utah, US

Quantitative Risk Assessment: monitoring & assessment

- Perform industrial hygiene exposure monitoring when qualitative risk results indicate the exposure profile is uncertain or exposures may exceed occupational exposure limits
- Collect task based personal breathing zone air samples
- Randomly select employees within each similar exposure group (SEG) to be sampled
- Add blank samples based on number of samples (1 blank / 10 samples).
- Ensure that **Chain of Custody** is followed during sampling and shipping of samples (as per Laboratory Analytical Request Form).
- Use Bayesian statistics tool to determine the 95th percentile
- Conduct statistical analysis of sampling results to determine respirator specification (e.g. assigned protection factor) if required



IHDataAnalyst.lnk

Quantitative Risk Assessment: Containment testing new installations

- SMEPAC protocol: ISPE Good Practice Guide:
 Assessing the particulate containment performance of pharmaceutical equipment
- Evaluate compliance with Design Exposure Limit included in User Requirement Specifications (50% most potent API)
- Select Surrogate: for example paracetamol micronized
 - 25 mm PTFE (teflon) filter (5.0 μm)
 - LOD: < 1 nanogram/filter
- Protocol to validate containment new installations
 - static monitoring: 120° around transfer ports
 - background monitoring
 - personal breathing zone samples during activity
 - worst case approach = challenge the installation
 - monitor during 3 runs

Quantitative Risk Assessment: dermal assessment

- Wipe sampling protocols and analytical methods validated by J&J-approved labs
- Collect 100 cm² wipe samples at identified locations
- Measure surface contamination, eg work surfaces, equipment
- Not a measure of individual exposure
- Confirm effectiveness of cleaning or decontamination, e.g. in case of skin notation, DSEN
- Evaluate cross contamination non processing areas
- Compare values with Surface Target Value

Content

- Hazard identification & communication
- Qualitative & Quantitative Risk Assessments
- Controlling exposures by respecting Hierarchy of Controls

Hierarchy of Control process flow

EHS&S - IH

- Focus on outcome RA
 - ✓ Chemicals and Noise
 - ✓ Identification unit operations
 - ✓ Identify level of exceeding limits
 - ✓ Evaluate specific hazards (CMR, acute toxic)
 - ✓ Evaluate frequency unit operations
- Outcome: Overview unit operations with risk rating

Engineering / Facilities

- Focus on technical solution
 - ✓ Identify Technical solution
 - ✓ Perform impact assessment on reduction risk
 - ✓ Evaluate engineering challenges and complexity
 - ✓ Evaluate additional areas positive impact
 - ✓ Range total project cost
- Outcome: Technical solutions with preferability rating

Management

- Review information
 - ✓ Review risk rating (high number, high risk)
 - ✓ Review feasibility rating (high number, high preference)

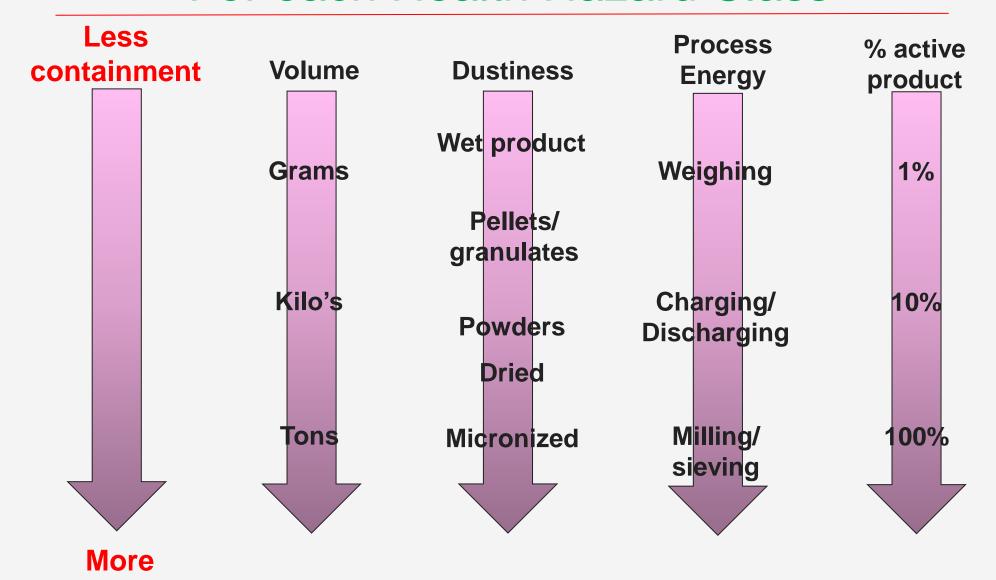
Outcome:

Management Decision (approved, rejected or put on hold) and timing

Hierarchy of Controls

Approach

- Focus on product transfer
- Primary containment:
 - Isolator technology
 - Flexible containment: big bags, endless liner, ...
 - Containment devices: PTS/DCS, powder feed unit, split butterfly valves, ...
 - Ventilation systems: cabinet, down flow booth, LAF
- Secondary Containment:
 - Separation areas: control flow air pressure difference
- Personal Protective Equipment
- Importance of on-the-job training & maintenance



Hierarchy of Controls

containment

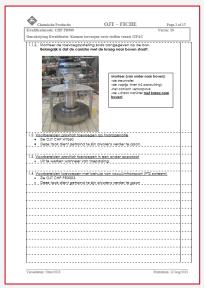
Approach

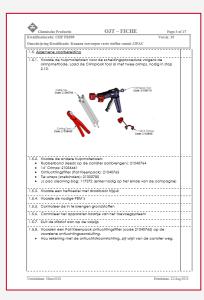
For each Health Hazard Class

Contained dumping station

- Supplier: AZO Belgium
- Containment level: 20 μg/m³
- Specifications
 - Custom made
 - Continuous liner back site to collect empty bags
- Considerations:
 - ergonomic review (mock-up)
 - on the job training operators
 - additional charging level






Flexible containment

- Supplier: ILC Dover
- Containment level: 5 μg/m³
- Specifications
 - Commercially available
 - Double bags
 - Cut & crimp
- Considerations:
 - ergonomic advantage: limit manual handling
 - on the job training operators
 - additional charging level / valve mounted on reactor

Flexible containment with suction hopper & Powder Transfer System

- Supplier: ILC Dover, DEC
- Containment level: 5 μg/m³
- Specifications
 - Bags & Powder Transfer System commercially available
 - PTS mounted on dedicated valve reactor
 - Suction hopper: custom made design: delumper & nitrogen nozzles
 - Double bags
 - Cut & crimp
- Considerations:
 - ergonomic advantage: limit manual handling
 - on the job training operators
 - FAT testing done with worst case product

Drum Containment System with Powder Transfer System

- Supplier: DEC, De Dietrich
- Containment level: 1 μg/m³
- Specifications
 - Drums & Powder Transfer System commercially available
 - PTS mounted on dedicated valve reactor
 - Suction lance
- Considerations:
 - ergonomic challenge: posture, weight, repetition
 - on the job training operators

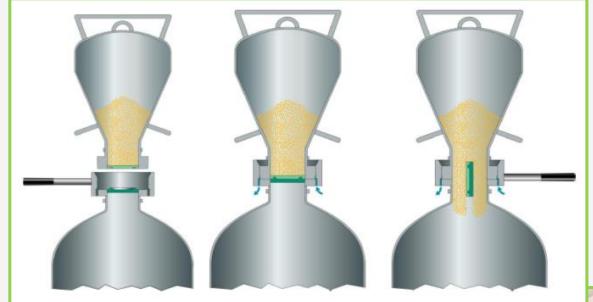
Isolator technology

- Supplier: Extract Technology, SKAN
- Containment level: 0.01 μg/m³
- Specifications
 - Custom made
 - Rapid Transfer Port CRL
- Considerations:
 - importance ergonomic design
 - URS template
 - preventive maintenance

Discharging dryer

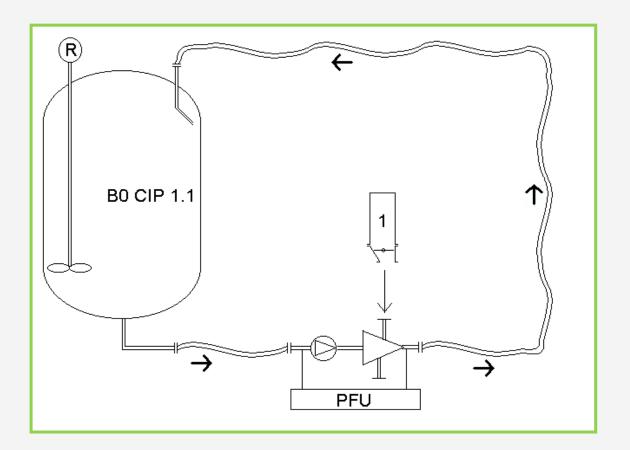
Endless liner

- Supplier: ILC Dover
- Containment level: 1 μg/m³
- Specifications
 - Mounted under valve dryer
 - Cut / crimp
- Considerations:
 - turning platform: ergonomic improvement
 - limited weight, combination with RTP drum



Charging mixer

Split butterfly valve & Cleaning In Place



Charging mixer

Powder feed unit (venturi) & CIP

Weighing Warehouse

Down flow booth (with screen)

- Supplier: Howorth, Hosokawa, Extract Technology,...
- Containment level: 1 100 μg/m³
- Considerations:
 - importance position & training operator
 - concentration depending on amount and product
 - movable screen with gloves

Weighing API Quality Control

Weighing samples & bringing into a solution

- Weighing API before analysis
- Bring API in solution
- Different technologies with different containment
 - Vented weighing balance
 - Biosafety Cabinet
 - Weighing Isolator

Summary

- Process embedded in R&D to develop hazard communication data supported by Occupational Toxicology
- Tools developed and implemented to support the Qualitative Risk assessments
- Validated analytical methods in place for each API to support evaluation of dermal and inhalable exposure at the workplace
- Statistical analyses based on personal monitoring samples during identified activities to verify containment levels installations
- Integrated process controlling exposures by respecting Hierarchy of Controls

Q&A

Johnson-Johnson